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Inviscid, adiabatic, one-dimensional flow of a conducting gas in the presence of crossed 
electric and magnetic fields is investigated for the case where the magnetic field is 
generated by the current being supplied to the gas. The electrode geometry and the 
connections to the electrical power supply are such that the magnetic field falls to zero 
at the downstream end of the MHD duct. The analysis allows for magnetic Reynolds 
number r ,  to be anywhere in the range 0 to 00. The main part of the investigation is 
restricted to consideration of ducts with constant spacing between electrodes. 

The way in which the density of the gas varies along the duct with the changing 
magnetic field is analysed generally and the results are then applied to the case where 
gas is fed to the MHD duct from high pressure in a plenum chamber and where the 
duct exhausts to a region of negligible pressure. If the flow is choked by the converging 
entry to the duct and the magnetic Reynolds number is moderate to high, the main 
electromagnetic effect is for thej  x B forces to accelerate the gas to supersonic speeds. 
As r ,  is reduced, ohmic heating becomes more important, and it may cause the flow 
to be choked at exit from the duct, giving rise to a reduction in mass flow. For certain 
ranges of Y, and ratio of initial magnetic pressure to plenum-chamber pressure the flow 
may choke at a sonic point within the duct itself, while accelerating from subsonic to 
supersonic through the point. 

Some illustrative examples of how properties vary with distance along the duct have 
been computed and the consequences of the analysis for MHD thrusters are explored. 
The magnetic forces will augment thrust per unit cross-sectional area, the essential 
measure of this being the drop in magnetic pressure along the duct, but there is an 
upper limit on the ratio of magnetic pressure to plenum-chamber pressure for flows to 
be possible. Flow at low magnetic Reynolds number is favoured if the object is to 
increase specific thrust by reducing mass flow through the duct. 

1. Introduction 
One-dimensional flow of an electrically conducing gas through applied electric and 

magnetic fields has been studied extensively (beginning with Resler & Sears 1958). In 
such work it was generally assumed that the magnetic field was not changed by the 
current in the flow (i.e. the magnetic Reynolds number Y, was assumed to be very 
small). 

More recently, Kuriki, Kunii & Shimizu (1983) have described a problem of one- 
dimensional MHD flow with effective magnetic Reynolds number ranging from low to 
high. They studied an idealized model for gas acceleration in an MPD arcjet, where the 



148 M .  D.  Cowley and J.  H. Horlock 

Electrical 
power 
supply 

Y +  

FIGURE 1. Geometry of the annular duct. 

magnetic field is self-induced and the geometry is that of figure 1, which shows an 
annulus of large mean radius. The walls of the annulus form electrodes which are 
connected to an electrical power supply, so that there may be an electric field E, and 
a current flow (of densityj,) across the duct. The magnetic flux of density B,, associated 
only with current flow in the gas, is continuous in the tangential z-direction (i.e. round 
the annulus of large radius) but B, (and other properties) are taken to be functions of 
the streamwise coordinate x only. 

The assumption of one-dimensionality and the boundary conditions on electric and 
magnetic fields merit discussion. If the current flow along the upper electrode is J(x) 
per unit width of electrode, then the current density in the channel j ,  is equal to 
-dJ/dx. The power supply is taken to be connected to the upstream ends of the 
electrodes and to provide a return path upstream, so that J is zero at the end of the 
electrodes (x = L)  and, since there is no current enclosed by the line integral of 
magnetic flux density round the annulus at x = L, that magnetic flux density must be 
zero. Similarly it follows that the flux density at entry B, is directly proportional to the 
current flow in the electrodes there, B, = pJ0. If the power supply is envisaged as a 
generator of known current, B, will be specified. Note that the current distribution in 
the gas controls the form of the magnetic field even at very low magnetic Reynolds 
number, but that the distribution will be affected by the motion at moderate to high 
values of rm. 

One-dimensionality implies that fringing of electric and magnetic fields is neglected, 
e.g. at the downstream end of the electrodes, where like Kuriki et al. we shall assume 
the electric field intensity changes from a finite value to zero in a short length. At high 
values of rm current boundary layers will tend to form on the walls downstream of 
where the electrodes end, in order to permit sweeping of the magnetic flux with the 
flow. The flux distribution in the boundary layers is such that 

where the magnetic Reynolds number rm is based on length of duct L. If the electrode 
spacing is s, then the length scale of the fringing (from the end of the electrodes to where 
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the current boundary layers meet) will be O(r,s2/L). For small fringing effect, the 
longitudinal scale of the electrodes L must be large compared with this quantity, 

i.e. 

is a condition for one-dimensionality. (L / s  must anyway be much greater than unity 
to avoid normal fringing effects at low rm.)  

By assuming the electromagnetic acceleration to be dominant, Kuriki et al. were able 
to obtain magnetic flux and velocity distributions in a one-dimensional duct, essentially 
for a selected value of their parameter R, = aB:L/G, where a is the electrical 
conductivity and G is mass flow rate per unit area (an average value in cases where 
cross-sectional area varied). A voltage parameter, q5 = ,uEG/B& was determined so as 
to give B, zero at exit from the channel. The relation between 4 and R, was found 
(described by the authors as the voltage-current characteristics of the MPD arcjet). 

In the present work, both the geometry and the boundary condition on B, at 
x = L (B, = 0)  used by Kuriki et al. are adopted. Like them, we shall assume that the 
gas is electrically conducting at entrance to the duct, that the electrical conductivity is 
unchanged along the duct, and we shall neglect the Hall effect. However, their 
additional assumption about the dominant magnitude of the electromagnetic 
acceleration is not made. They dropped the pressure p as a flow parameter, but here 
it is retained, the flow being assumed to be that of an inviscid, electrically conducting, 
perfect gas. Most of the analysis refers to ducts with constant spacing between 
electrodes. 

The effect of pressure in one-dimensional MHD flow of the type investigated here 
was considered by Shercliff (1965), but with a restricted form of the equation of state 
of the gas. He took the pressure to be directly proportional to the density, implying a 
constant speed of sound (in the analysis of Kuriki et al. speed of sound is effectively 
zero). A particular feature of Shercliffs analysis was his study of how magnetic flux 
density B would vary with density p along the duct and this proved a powerful tool 
for elucidating possible flows. We shall therefore adopt a similar approach here, 
investigating the (B, p)-variation, but for a gas with a more conventional equation of 
state ($53 and 4). The simplicity of the algebra when p / p  is taken as constant makes 
it an attractive assumption and by way of introduction to the main analysis we shall 
refer further to the consequences of that assumption in $2. 

The major difference in the work of this paper from either that of Kuriki et al. or 
that of Shercliff lies in the fact that pressure enters the problem as a function of two 
thermodynamic variables and an extra conservation equation is needed - the energy 
equation. This in turn involves an assumption about heat transfer and we take the flow 
to be adiabatic ~ a questionable assumption if temperature is high and radiation effects 
become important. It is within the light of this limitation that we have not thought it 
worthwhile to use more complex gas property relations than the simple equations for 
a perfect gas. A further shortcoming is that our model is not able to describe any 
process by which cold gas fed to the duct might become ionized. However, the model 
flows are extremely complex and we believe that they are of intrinsic interest as 
examples of magnetogasdynamic behaviour in spite of the shortcomings. 

Nevertheless, it will be found that even with the above assumptions the situation 
remains highly complex and further limitations have to be imposed on the analysis 
presented here. First, the full justification of how flow properties vary as the intensity 
of magnetic field decreases along the duct will not be given, but there is an outline of 
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the main features of flow behaviour in $ 3 .  Readers interested in seeing further details 
of the justification should apply to the Editorial Office of the Journal for a copy of 
Appendices to this paper which are held there. Secondly we shall concentrate on the 
application that was the concern of Kuriki et al., namely electromagnetic thrusters. 
This imposes constraints on the flow states at exit from and inlet to the duct, but still 
leaves a rich variety of flows. How the occurrence of the different flow patterns depends 
on overall parameters for the duct is described in 94, but once again, full justification 
is relegated to the Appendices which are available on request. To illustrate each of the 
different types of flow pattern, numerical solutions are presented in 95. Some of the 
consequences of the theory for ideal thrusters are explored in 96. 

2. Basic equations 
We consider the one-dimensional flow of figure 1, but now drop the subscripts 

previously used. Local fluid properties are velocity u, pressure p ,  density p, enthalpy h. 
Local magnetic flux density is B, local current density j ,  and local electric field intensity 
E = V/s,  where V is the voltage applied across the channel, of electrode spacing s. 

In differential form, the relevant equations for an inviscid adiabatic flow are: 

momentum, 

continuity, 

Ampere’s law, 

dp du 
-+pu- = jB; 
dx dx 

dh du 
dx dx 

pu-+pu2- = jE ;  

= - pJ’ ; dB 
dx 
- 

( 3 )  

(4) 

(5) 

and Ohm’s law, j = v(E-uB). (6) 

continuity, G = pu = m / A ,  (7) 

Equation ( 3 )  may be integrated directly to give 

where m is the mass flow rate (constant) and A is the total cross-sectional area of the 
duct (proportional to electrode spacing s). Substituting for j from ( 5 )  in (4), the latter 
equation may be integrated on noting that pu and E are both inversely proportional 
to electrode spacing : 

where fl is a constant. EB/p is the Poynting vector and (8) is easily recognized as an 
expression of the overall balance between the fluxes of enthalpy, kinetic energy and 
electrical energy. 

If the electrode spacing is constant, G of (7) is constant and the momentum equation 
can then be integrated to give: 

momentum, (9) 

where F is constant and we have again substituted for j from (5). Here we may 
recognize that the equation is an expression of overall balance between pressure, inertia 
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FIGURE 2. (a) Relation between terms in the momentum equation for a gas withplp = const. (b) The 
(B, p)-curve for a gas with p/p = const. The arrows indicate the direction of travel along the curve 
for increasing distance along the MHD duct. 0 ,  Sonic point; \ \, magnetosonic point. 

stress and magnetic pressure B2/2p. In writing (7) and (8), the notation of ordinary 
one-dimensional gasdynamics (Shercliff 1958) with the symbols F (impulse function per 
unit area), G (mass flow per unit area) and H (stagnation enthalpy) has been 
introduced. In terms of these quantities a Rayleigh process is one with F and G 
constant, and a Fanno process one with G and H constant, for example. 

An elementary type of compressibility is given by pressure being directly 
proportional to density only (Shercliff 1965). The constant of proportionality, being 
also equal to dpldp, is the square of the speed of sound a2, and (9) becomes 

G2 B2 
-+a2p+- = F. 
P 2P 

The variation with density of the three terms on the left-hand side of this equation is 
as shown on figure 2(a)  and it follows that the path line of the process on a (B, p)-plot 
is a closed loop which is symmetrical about the p-axis (see figure 2b). The slope of the 
(B, p)-loop is 

B - _  dP - 
dB p(u2-a2)' 

Three important points follow from this expression, which is still valid if the 
p / p  = const. condition is relaxed top =&). First, Bis stationary at sonic points (u = a 
at the extremities of the loop) and p is stationary when B = 0 (p is a maximum or a 
minimum where the curve crosses the vertical axis). Secondly, a continuous length of 
curve between the sonic-state extremities must be either supersonic or subsonic. Since 
dp/dB2 is positive on the lower part of the loop of figure 2(b), that part must be 
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supersonic, while the upper part is subsonic. Note that there is the possibility of 
transition by an ordinary gasdynamic shock wave from supersonic to subsonic with 
B = const. Thirdly, at a point where a straight line from the origin touches the closed 
loop, 

P - d P -  B -- - 

B dB - ,u(u2-a2)’ 

B/&p); is the AlfvCn wave speed b and (a2 + b’); is the speed of magnetoacoustic waves 
with direction of propagation perpendicular to the magnetic field. Equation (12) 
therefore implies that the flow is magnetosonic at the tangent point. 

The direction of travel on the loop to give an allowable variation of p and B with 
distance follows from consideration of Ohm’s law. From ( 5 )  and (6) we obtain 

i.e. u2 = a’+ B2/,up. (12) 

1 dB 
j = g(E-GB/p) = ---, 

LC dx 
so that, for a process in which B is reducing, E must be greater than GBIp, i.e. the 
portion of the (B,p)-loop representing that process must lie to the left of the line on 
which p / B  = G / E  (see figure 2b). 

To determine the flow in the duct, we need to prescribe entry and exit conditions. 
Note that it is not enough to specify B = 0 for the latter since there are two possible 
flow states, one supersonic and the other subsonic. As mentioned in $1, we shall 
concentrate on the application of the analysis to thrusters and we assume first that the 
duct exhausts into an ambient condition of very low pressure. The exit state cannot 
then be subsonic. The supersonic state with B = 0 can be approached along the lower 
part of the (B, p)-loop provided that any supersonic part involved lies to the left of the 
p / B  = G / E  line. It is then not possible to find a configuration that allows a continuous 
variation from subsonic to sonic to supersonic, ending with B = 0, since increasing B 
subsonically would be prohibited. Therefore, the entry state must not be subsonic. 
Secondly, we limit discussion to the case of gas being supplied to the duct from a 
plenum chamber via a pure convergence. The inlet state must then not be supersonic 
and the only possibility is for it to be precisely sonic, i.e. the right-hand sonic point on 
figure 2(b), and from the that state density decreases (i.e. the flow accelerates 
continuously) to the exit condition. The overall increase in momentum flux of the gas 
will be somewhat greater than the electromagnetic force applied since the falling 
density implies that there is also a pressure force in the direction of the flow. 

p / B  takes its lowest value at the magnetosonic point, so that from (13) current 
density is a minimum there, as will be the rate of change of B with distance. A special 
case arises when the magnetic Reynolds number tends to infinity and the minimum 
current density must then tend to zero (i.e. the p / B  = G / E  line must approach 
tangency to the loop), so that the total current across the duct can remain finite. Near 
the limit a substantial length of the duct has flow at a condition close to magnetosonic, 
i.e. u --f (az + b’):, with B nearly constant. Such a condition also appears in the solution 
of Kuriki et al. (1983), but in their work a = 0, so that the corresponding result is 
u + b over most of the duct length. 

3. (B,p)-variation for a perfect gas 
Having established how the magnetic field B varies with the density p in the MHD 

duct when pressure is directly proportional to density, so that the controlling equations 
are continuity (7) and momentum (9) only, we turn to the problem of (B, p)-variation 
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when pressure is taken to be a function of enthalpy as well as density. Now the energy 
equation (8) must be added to (7) and (9). However, for brevity, only an outline of the 
results will be provided here and for further details Appendix A of the Appendices 
available on request from the Editorial Office of the Journal should be consulted. 

Some general points about the flow equations can give an impression of what may 
happen in adiabatic flow when the energy equation is involved. First, if conditions 
could in some sense be such that the magnetic-pressure term has a strong influence in 
the momentum equation, while that of the Poynting vector in the energy equation is 
weak, behaviour will approach that of the well-known Fanno process (G and H 
constant with Fvarying). The difference is that the Fanno process is normally taken as 
a representation of friction opposing the flow, whereas the reducing magnetic pressure 
corresponds to a force in the flow direction. Strictly, a Fanno process with Fincreasing 
is easily shown to be inconsistent with the second law of thermodynamics - entropy 
would be decreasing under adiabatic conditions - and the implication is that the 
Poynting vector cannot be wholly discounted. Nevertheless, it is of interest to note that 
in a Fanno process F is a minimum at a sonic point (see, for example, Shercliff 1958) 
and the (B,p)-curve would be a closed loop, qualitatively like that of a gas with 
p / p  = const. (see figure 3a). 

Secondly, if the strength of influence of the terms is reversed, conditions will 
approach those of a Rayleigh process (G and F constant with H varying). For such a 
process His  a maximum when the flow is sonic (Shercliff 1958) and the (B, p)-curve can 
therefore only exhibit a point of minimum B, and must be as sketched in figure 3 (b). 
The point of minimum B may lie on either side of the p-axis. Since the shape of the 
(B, p)-curve for a Rayleigh process is significantly different from those considered up to 
now, it is likely that the combined effects of magnetic pressure and Poynting vector will 
give rise to some complexity. 

The general differential relation for dB/dp may be easily derived from (2)-(5) if we 
introduce the thermodynamic parameter 7,  = a2/(i3p/ap),, where a = (ap/ap)% is the 
isentropic speed of sound. It may be shown that under general conditions of 
thermodynamic equilibrium (but the gas not necessarily perfect) 

(14) dh = CY,/(Y,- 1))dplp-a2{l/(y,- l>>dP/P. 

Using this result to eliminate dp and dh from the equations, we obtain 

which may be compared with (1 l), the equivalent for a gas with p / p  = const. B is thus 
stationary at sonic points, but p is now stationary when E/uB = yh/(yh - 1) instead of 
when B = 0. The condition E/uB = yh / ( yh -  1) was found to be of particular 
significance in the low-magnetic-Reynolds-number analysis of Resler & Sears (1 958). 
Here the possibility of there being states where both E/uB = -yh/(yh - 1) and u = a, so 
that dp/dB cannot be determined directly from the above equation, will be found to 
be of major significance for all values of magnetic Reynolds number. 

At a point on a (B,p)-curve where the tangent passes through the origin, so that 
dp/dB = p/B, the above equation gives 

u2 = a2 + { 1 - (y, - l)(E/uB- 1)) (B2/pp), (16) 

which may be compared with (12) for a gas with p / p  = const. It follows that the flow 
velocity only equals the magnetoacoustic speed (a2 + b2)i at the tangent point if we have 
the additional condition E/uB = 1 there. 
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FIGURE 3. (B,p)-variation for special cases. (a )  Fanno-type process (G and H const. while F varies, 
being a minimum at u = a). (b) Rayleigh-type process (G and F const. while H varies, being a 
maximum at u = a). 0,  Sonic point. 

Making now the assumption that the gas is perfect with constant ratio of specific 
heat capacities y, the parameter yn, as defined above, may be identified with 
y( = a2/i3p/i3p), and also with the isentropic index (= a2//(p/p)). We then have for 
such a gas 

and the energy equation (8) may be written as 

h = { Y A Y  - l ) I P / P ,  a2 = YP/P,  (17) 

Eliminating p and u by means of continuity (7) and momentum (8), we obtain 

and again a comparison may be made with the equivalent equation (10) for a gas with 
p / p  = const. Note that, for given p, the equation is quadratic in B, the two values being 
symmetrically disposed about {(y- l)/y}(E/G)p. This also confirms the fact that p is 
normally stationary when B = { (y-  l)/y)(E/G)p. Equation (19) yields a cubic in p for 
the values at the stationary points, the products of the roots being positive, so that 
there is the possibility of three such points occurring in a plot of p against B. 

Closer inspection of (19) reveals that it is quadratic in p for given B also. This 
corresponds to the fact that F and H are directly determined from B by (9) and (8) and 
states that occur on either side of a shock wave are related by G, F and H being the 
same on each side. It then follows from the properties of shock waves that there cannot 
be more than two states for given B, one being subsonic (at the greater value of p) and 
the other supersonic. 

Although the variation of p with B for a perfect gas is embodied in (19), the shapes 
of all possible solution curves in the (B,p)-plane are not immediately obvious, and a 
further consideration is the fact that the equation by itself carries no information about 
whether a particular value of p corresponds to a real gas state, e.g. it may turn out that 
the pressure is negative. In Appendix A of the appendices available on request, it is 
shown how the variation of gas properties with varying B for given G, F ,  HO and E 
may be obtained from a study of process curves in the (F, H)-plane in a similar manner 
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FIGURE 4. The three types of (B,p)-curve for the flow of a perfect gas in a duct of constant cross- 
sectional area. (a) A closed-loop lower branch with the possibility of an upper branch. (b) A 
transitional case with upper and lower branches merging at a cross-over point. ( c )  An open curve with 
p+ co at one end and B a minimum at the only sonic point. ---, Possible shock-wave transition; 
0,  sonic point; + , point where p = 0. 

to the investigation of other magnetogasdynamic processes (Cowley 1963, 1967). 
Without further justification here we present sketches in figure 4 of the three main types 
of (B,p)-curve that are found to occur. They are as follows. 

(a)  A closed loop with two sonic points and two points where p is stationary, 
qualitatively similar to the curve for a gas with p / p  = const. or to a Fanno process, but 
no longer symmetrically disposed about the p-axis. There is the possibility of a separate 
upper branch, on which there is a third sonic point, B being a minimum there. The 
supersonic part of the upper branch terminates at a point where pressure falls to zero 
and there may or may not be a point where p is stationary. An important feature to 
note because of its consequence for the subsequent analysis is that the upper-branch 
sonic point must occur where uB/E = GB/pE < (y-  l)/y, i.e. to the left of the dashed 
line on figure 4(a) while the lower-branch B-maximum point must occur where 
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uB/E < ( y  - l)/y. In general it is possible for some of the lower loop to be excluded 
because pressure becomes negative, but not in the context of the thruster problem. 

(b) A transitional case, where the lower loop merges with the upper branch at what 
we shall refer to as a crossover point. Conditions at the crossover are such that both 
u = a and uB/E = ( y  - l)/y7 so that dp/dB (equation (1 5))  may be finite and non-zero. 

(c) An open curve with B reaching a minimum at a sonic point where uB/E < 
( y -  l)/y while p extends to infinity on the subsonic part of the curve and the 
supersonic part terminates at a point where p = 0. The curve is qualitatively like that 
of a Rayleigh process. 

Ohm's law in the form quoted for p / p  = const. is still appropriate (equation (13)) 
and it follows that the variation of B and p with distance along the duct must be as 
shown by the arrows on figure 4, assuming the curves lie to the left of the line on which 
p / B  = G/E.  We see that the type (b) curve gives a possibility that was not available for 
a gas with p / p  = const., namely continuous variation from a subsonic state on the 
upper branch through sonic at the crossover point to supersonic. 

Another interesting possibility arises from the fact that the (B, p)-curves are no longer 
symmetric about the p-axis, as they were for a gas with p / p  = const. Appropriate 
values of G, F O  and H" allow the curve to touch the p-axis so that the end condition 
( B  = 0) can be satisfied at a sonic point. We may therefore have subsonic flow in a duct 
leading to sonic exit. 

4. Determining flow behaviour for thrusters 
We now consider the general behaviour of our one-dimensional adiabatic flows as 

they might occur in thrusters and determine the parameter ranges for the different 
types of flow. As for 93 the discussion will be limited to the essential points and further 
details may be found in Appendix B of the appendices available on request from the 
Editorial Office. 

The magnetic field at entry to the MHD duct B, is taken to be specified (i.e. the total 
current is given - see 8 1) and the state of the gas in the upstream plenum chamber is 
also taken to be specified (i.e. stagnation conditions at entry to the duct are given). As 
in the discussion for a gas with p / p  = const., it is assumed that between the plenum 
chamber and the start of the MHD duct the passage is converging, so that the entry 
flow cannot be supersonic, and that the pressure beyond the end of the duct is so low 
that exit flow cannot be subsonic. Flows with exit Mach number less than unity may 
certainly exist if the pressure is matched to the external value, but they are not 
considered here. 

One other condition is needed to determine the flow in the MHD duct and that in 
practice might well be its length. However, in the context of a general analysis of 
(B, p)-variation, length is only found as a final step by integration of Ohm's law. For the 
purpose of determining parameter ranges in which different types of flow occur, we 
take the remaining condition to be a specified value of electric field. It is to be expected 
that increasing the electric field is in some sense equivalent to shortening the duct, i.e. 
as the impedance of the thruster is increased, more voltage will be needed to drive the 
current associated with the given magnetic field. 

With B,, E and plenum-chamber conditions being the significant physical properties, 
a possible approach to characterizing thruster behaviour might be to take the ratio of 
initial magnetic pressure to plenum pressure p p  as one non-dimensional parameter, 
Bi/2,up,. We choose, in fact, to take what is equivalent, namely B ~ / , ~ p * u * ~ ,  where p* 
and u* are values of density and velocity that would be achieved by adiabatic reversible 
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(B, p)-curve 

a (lower loop) (i) 

(ii) 
(iii) 

(iv) 

(v) 
(vi) 

b 

(vii) 

(viii) 

Entry 

sonic 

sonic 
sonic 

subsonic 

crossover 
subsonic 
(above crossover) 

subsonic 

subsonic 
(above crossover) 

(above crossover) 

subsonic 

subsonic 

(below crossover) 

Exit 

supersonic 

supersonic 
sonic 

sonic 

supersonic 
supersonic 

supersonic 

sonic 

sonic 

sonic 

Flow pattern 

supersonic/magnetosonic/ 
supersonic 

supersonic 
supersonic/shock-wave/ 
subsonic 

subsonic 

supersonic 
subsonic/crossover/ 
supersonic/magnetosonic/ 
supersonic 

supersonic 

supersonic/shock-wave/ 
subsonic 

subsonic/crossover/ 

subsonic/crossover/ 

subsonic 

subsonic 

TABLE 1. Flow types in the MHD duct 

expansion to sonic conditions from the plenum chamber (i.e. they are the inlet values 
to the duct if the entry is actually sonic). The relation of p * ~ * ~  to plenum pressure is 
given by the usual results for one-dimensional isentropic flow with area variation as 

We choose the electric-field parameter to be E/u*B, and we shall take y = $.t In the 
following analysis we shall use the notation 

i.e. /I* and A* are taken as the non-dimensional groups which determine thruster 
behaviour. However, it will be convenient to refer on occasion to groupings based on 
local properties at a particular state, e.g. if the state is designated state 1, 

Reference to the (B, p)-curves of figure 4 shows that the entry and exit conditions may 
be satisfied by a variety of flows. These are listed in table 1 and paths on the (B, p)-plane 
are shown as insets on figure 5.  Note that use is being made of the two possibilities 
mentioned at the end of $3,  namely transition from subsonic flow in the duct to 
supersonic via a crossover point and sonic exit following subsonic flow. 

Of the flows listed in table 1, a(& a($, b(vi) and b(vii) are distinguished by having 
two states where specific relations hold, e.g. u = a where B = 0 is the relation at a sonic 
exit state. The condition for a crossover point in the flow requires that u = a where 
E = uB, but, if that point is at entry, there are effectively two relations since B = B, also. 

7 The value of y has been chosen somewhat arbitrarily. Ionizing gases have a low effective y, so 
that g, the value for a fully ionized gas would be too high. 
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FIGURE 5. The parameter space p* = Bi/,up*u*2, A* = E/u*B,, showing the (B,p)-variation that 
occurs in the various regions of that space when the duct is choked and the entry state has to have 
Mach number equal to or less than unity. The region below and to the right of line AA’A is 
inaccessible. On the line BB’B” each point represents a range of possible processes with the same entry 
and exit states, but the position of a shock-wave transition is undetermined by the parameter values. 
On the inset (B,p)-curves (see also table 1): 0,  sonic point; \\, magnetosonic point; -, part of 
curve representing the process; - - - -, part of curve not involved in the process. 

It follows that flow pattern b(v) may be placed in the same category as a(i), etc. The 
other flow patterns have only one specific state and it is to be expected that these occur 
for whole regions of the parameter plane (p*, A*), while those with two specific states 
appear on lines separating those regions. 

Denoting properties on two specific states by the subscripts 1 and 2, they are related 
by continuity (7), the integrated form of the momentum equation (9) and the integrated 
energy equation (8) : 

PlUl = P2 u2, (22 4 
(22 b) 

(22 4 
Introduction of the perfect-gas relations (17) and of the local parameters Pl and A,, as 
defined by (21 b) yields after rearrangement 

P1+ P 1 4  + W 2 , u  = P2 + P2 4 + B;/2P, 

h, + ~ : / 2  + EB,/,up, u1 = h, + ~ : / 2  + EB2/,up2 u,. 

where A4 is the Mach number of the flow. If we now make particular specifications for 
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states 1 and 2, a relationship between p1 and A, (and consequently between /3* and A*) 
follows. Thus, for the flow pattern a(i) with sonic entry (state 1) and a magnetoacoustic 
point (state 2), the specific states require 

M ,  = 1, /3, =p*,  A, = A*, (24 4 

where the relations of (24b) have been derived from ui = a ~ + b ~ / p p ,  and E = u2 B,. 
Equations (23) linking the two states, together with the state specifications (24), 
provide seven equations for the eight variables M,, M2,  B,/B,, u2/u1,  A,, /3,, A*, /3*, and 
the expectation that there is a direct relation between /3* and A* for which type a(i) flow 
occurs has been fulfilled. The relation is plotted as the line AA’ on the parameter plane 
(p*, A*) shown in figure 5. It terminates at A’ because at that point the (B, p)-curve 
switches to type b. 

In a similar fashion other lines in the @*, A)-plane corresponding to conditions for 
flows with two specific states may be found and they are reproduced on figure 5.  Thus 
BB’ is the line for a type a($ flow and it is found from (23) with the relations 

M ,  = 1 ,  p1 =p*,  A, = A*, (25 a)  
M ,  = 1, BJB,  = 0, 

1 being taken as the entry state and 2 as the exit. The system of equations for this case 
yields an explicit equation for the line, which is 

Note that each point on BB’ represents a range of flows depending on the strength of 
the shock wave that is embedded in the flow. The apparent indeterminacy disappears 
when the situation is characterized by /3* and a magnetic Reynolds number based on 
duct length, since the length required for a given change in B, being controlled by the 
combination of Ampere’s law and Ohm’s law (13)’ depends on whether uB is low 
(subsonic) or high (supersonic). Thus the value of the magnetic Reynolds number 
depends on how much of the flow is subsonic as opposed to supersonic, i.e. on the 
position of the shock wave. 

The line A’A on figure 5 represents type b(vi) flow with specific relations at a 
crossover point (state 1) and a magnetoacoustic point (state 2). These states require 
that 

Ml = 1, A, = E/u, B, = y / ( y -  l), (27 a)  

and with (23) there are six equations for the six unknowns M,, M,, u2/u1, B,/B,, p1 and 
A,. The values of the local parameters /3, and A, at the crossover are therefore fixed for 
all points on A A ,  being the same as /3* and A* at A ,  where the crossover is at entry, 
i.e. at values 16.19 and 4 respectively (for y = t).  To find /3* and A* for points away 
from A’, it is necessary to work back from the crossover state to a compatible subsonic 
state using (23). In performing such calculations we found that the increase in /3* along 
A’A on figure 5 comes about not so much from the change in B between subsonic 
entry and the crossover point in the flow, which is comparatively small however low 
the entry Mach number, but rather from the influence of changing conditions on p*u*,. 
/3* tends to a maximum value of 29.36 as the entry Mach number is reduced to zero 
(and A* + 00). 

6-2 
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The line B’B”, where the flow is of type b(viii) with a crossover (state 1) and sonic 
exit (state 2), has 

M ,  = 1, A, = E/u, B, = y / ( y -  l), 
M ,  = 1, B,/B, = 0, (28 b) 

and, like the situation on A’A, the values /3, and A, are the same along the whole line, 
being 7 and 4 respectively (y  = i). Parameters /3* and A* are again found by working 
backwards from the crossover to compatible subsonic entry. /3* tends to 15.006 as the 
entry Mach number approaches zero and, at this limit, the ratio of B, (entry) to B at 
the crossover is 918, irrespective of the value of y, while the ratio of magnetic pressure 
at entry to gas pressure B:/2,up0 is 2715 and also independent of y (see the discussion 
later, below (33)). 

The types of flow indicated for the regions between the lines AA‘A“ and BB’B”, and 
BB’B” and the A*-axis, on figure 5 are then reasonable inferences, but Appendix B of 
the appendices which may be obtained from the Editorial Office of the Journal should 
be consulted for a fuller discussion of how flow types depend on values of /3* and A*. 

An interesting feature of the map on the @*,A*)-plane is the fact that it extends 
indefinitely in the A*-direction. As mentioned above in connection with the lines A’A 
and B’”’, the Mach number at entry to the MHD duct tends to zero as A* + co on 
those lines. It is easily shown that, throughout the range of /3* at this limit and in 
relation to finite flow properties elsewhere in the duct, we may take entry values 
u, = 0, a, = 0, p, --f co, but p, u, (= G) and p ,  both non-zero and finite. The implication 
is that the only property of the gas state in the plenum chamber that has significance 
for the duct flow is the pressurep,, which becomes equal to the entry pressurep, at this 
limit, since acceleration in the initial convergence is negligible. Energy supplied 
electrically to the gas in the duct is wholly dominant by comparison with the enthalpy 
in the plenum chamber. The parameter /3* can still be formed since p * ~ * ~  depends only 
on the plenum-chamber pressure, but no other finite, non-zero, non-dimensional group 
that can be regarded as independent can be formed, nor is it possible to express 
velocity, density, etc., non-dimensionally using plenum-chamber properties only. 

A scheme for making the variables non-dimensional which permits detailed analysis 
of the A* + cc limit can be based on the assumption that G is specified rather than E. 
This was the scheme adopted by Kuriki et al. (1983). (For this reason and because the 
flow velocity is being raised from a negligible value compared to the exit velocity, we 
shall refer to this limit as the ‘KKS limit’.) A characteristic velocity is defined by 

which would be the velocity achieved by the flow if pressure were zero initially and 
finally. A finite electric field parameter may then be formed as 

It turns out that explicit equations can be found for A’ as a function of /3* in the KKS 
limit. To do this, we return to (22) relating properties at two states in the duct through 
continuity, momentum and energy, but in the basic form instead of the derived 
equations (23). Setting state 1 to be at entry to the duct (u, = h, = O,p, = p,, B, = B,) 
and state 2 to be at a sonic point, we obtain 

U, = Bt/2,uG, (29) 

A‘ = E/u, B,. (30) 
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For the range of /3* between B” and A ,  state 2 is taken as a crossover, so that 
E = yu2 B,/(y-  l ) ,  and, using this result to eliminate the electric field from (30) and 
(31 b), we obtain after some algebra 

For the range of /3* between the A*-axis and B”, state 2 is taken to be the exit state, so 
that B, = 0, and we obtain 

2 

A’ = ;-( 1 Y 2  1 +z) 2PPO left of B”. (33) 

Note that at B” both equations hold and eliminating A’ from (32) and (33) yields an 
equation for 2pp,,/B; that does not contain y. This confirms the assertion above that 
the ratio of magnetic pressure at entry to gas pressure at B” is independent of y and 
it is easily checked that the value of this ratio is 27/5.  

To complete the algebra of the explicit expressions for A’ as a function of /3*, it is 
only necessary to relate p,,, which is the same as the plenum pressure p p  in the KKS 
limit, to P * U * ~  using (20). 

In 55.3 it will be seen how the magnetic Reynolds number of the duct based on uk 
depends on A’ and /3*, so that the introduction of G to form a non-dimensional electric- 
field parameter is not as arbitrary as it seems at first. Since A’ is a function of /3* in the 
KKS limit, G becomes a function of /3*, B,, the electrical conductivity and the length 
of duct L and is therefore determined by the values of these parameters. 

5. Calculation of duct length and variation of properties with length 
For the case of constant spacing between electrodes (G = const.) the length required 

to produce the boundary condition of zero flux at x = L may be found by integration 
of the combination of Ampere’s and Ohm’s laws (13), i.e. 

With p known as a function of B (essentially from the general (B, p)-equation (19)), the 
right-hand side can be evaluated numerically. The situation would be different if the 
electrode spacing were not constant and, with a view to possible future extensions of 
the theory, it is of interest to try a more direct approach to the basic equations (2k (6 ) .  
After rearrangement they lead to differential equations for the four properties B, u, p 
and p in terms of non-dimensional length, [ = x /L ,  as follows: 

(35 b)  
S 

du 

, (35c) 

dP 
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Here B, u, p and s have been non-dimensionalized by their entry values, and p by 
p,ui (subscript 0 again referring to entry to the MHD duct). The controlling non- 
dimensional parameters appearing in the equations are 

but in presenting results we shall be referring to starred quantities, as in (21 a) of the 
last section, i.e. 

r z  = ,uru*L, /3* = Bi/,up* u*’, A* = E,/u*B,, (36b) 

Numerical solutions of the equations have been obtained for s = 1 .  They rely 
nevertheless on the general understanding of possible flows developed in $4, i.e. for 
chosen values of /3* and A*, the regime on figure 5 (which type of (B, p)-curve) and the 
initial Mach number are determined. From these results Po, A, and the initial value of 
non-dimensional pressure p are evaluated. Solutions are then computed for various 
trial values of the magnetic Reynolds number rm until one is found which gives B zero 
at exit, 5 = 1 .  

Two major sets of calculations were undertaken, for the parameter ranges 

(i) 1.35 < A* < 3.2 for /3* = 1.75, and 

(ii) 2.67 < A* < 5.36 for /3* = 8.75, 

as detailed on figure 6 ,  which shows again the U*,A*)-space of figure 5.  The values 
were selected so as to illustrate the types of flow pattern listed in table 1.  

5.1. Calculations for /3* = 1.75 
For /3* = 1.75 the analysis of $4 shows that the range 1.35 < A* < 2.5 relates to flows 
having entry Mach number M,  unity and exit Mach number Me supersonic with a type 
a (B,p)-curve. At the lowest value of A* (i.e. close to the line AA’ on figures 5 and 6)  
for which a successful computation was achieved, a high magnetic Reynolds number 
( r z  = 173) was required to give B = 0 at 5 = 1.  Plots of non-dimensional B and p for 
this case are shown in figure 7(a)  and illustrate the tendency towards formation of a 
magnetosonic plateau as rk --f cc. More representative plots of non-dimensional B and 
p are shown in figure 7 (b) for A* = 1.8. 

At A* = 2.5, /3* = 1.75, the operating condition is on the line BB’ of figures 5 and 
6.  The exit Mach number Me is then unity according to the analysis of $4 and figure 
7(c )  shows the property variation for this case on both the completely supersonic route 
to exit and the completely subsonic route. Solutions were also computed for two values 
of A* greater than 2.5 (approximately 2.63 and 3.20 when M, = 0.8 and 0.6 
respectively). The distributions of B and p are not presented for the latter cases, but 
they are qualitatively like that of the subsonic-flow case at A* = 2.5. No difficulty was 
experienced in computing the direct solution of (35) by the step-by-step method when 
/3* = 1.75. 

Plots of Mach-number variation along the duct length for various values of A* are 
shown together for comparative purposes on figure 8. 

5.2. Calculations for /3* = 8.75 

From the analysis of $4, it is found that for /3* = 8.75 flow in the duct will have sonic 
entry and supersonic exit and follow a type a (B, p)-curve if 2.6479 < A* < 4. This was 
confirmed by the computed solutions for variation of properties with 6, and, at the 
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p* = BZl,up*~*~ 

FIGURE 6. The u*, A*)-space, showing values of the parameters for which the equations have been 
integrated numerically. See figure 5 for the qualitative expectation of (B,  p)-variation corresponding 
to each point. 
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FIGURE 7. Variation of magnetic-field intensity and gas density with distance along the MHD duct 
for modest initial magnetic field (p* = Bi/?p*u*' = 1.75). Increasing electric-field parameter 
A* (= E/u*B,) corresponds to reducing magnetic Reynolds number. (a) A* = 1.35; (b) A* = 1.8; (c) 
A* = 2 .5 ;  -, supersonic; ----, subsonic. 
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FIGURE 8. Mach-number variation along the MHD duct for /?* = 1.75 and various values of A*. With 
A* = 2.5 the possibility of shock-wave transition within the duct also exists, but no example of such 
a flow is shown. 

lowest value of A* successfully attempted (2.67), the solution showed signs of the 
magnetosonic plateau being formed. The Mach-number distributions, for A* = 2.67, 
3.5 and 4.0 are shown in figure 9(a). 

Above A* = 4.0 up to A* = 4.5967, the analysis of $4 predicts that there will be 
subsonic entry, acceleration through a sonic state at a crossover point and then 
supersonic flow to the exit. It is perhaps not surprising that difficulty was experienced 
in getting the numerical solution to pass precisely through the crossover point and 
achieve supersonic flow. The tendency was for the computed solution to approximate 
to the subsonic part of the (B, p)-curve following that point. This is, of course, a valid 
solution of the equations, but one that does not fit the exit condition that we have 
assumed, namely that the flow must be supersonic or sonic at exit. The way in which 
the Mach number distributions with 5 were found was by running the computations 
from entry to a condition closely approximating to the crossover point and then 
re-starting the solution from a supersonic condition just after the crossover. The 
Mach-number distribution obtained in this way for A* = 4.3409 (entry Mach number 
= 0.9) is shown in figure 9(a)  and it is of interest to see how small a region of the duct 
is associated with the subsonic pre-crossover flow. 
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FIGURE 9. Mach-number variation along the MHD duct for a comparatively strong magnetic field 
(/3* = 8.75): (a) cases with some supersonic flow in the duct; (b) cases with no supersonic flow (except 
that for A* = 4.5967 the curve with some supersonic flow is included for comparison). 
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FIGURE 10. Value of electric-field parameter A* achieved as magnetic Reynolds number r: of the 
duct is varied at /3* = 0, 1.75 and 8.75. 

A* = 4.5967 at /3* = 8.75 corresponds to a point on the boundary line B’B” in the 
(,!I*, A*)-parameter-space of figures 5 and 6, so that for this A* there should after the 
crossover be a subsonic as well as a supersonic route to a sonic exit condition. The 
Mach-number distributions for both routes are compared on figure 9(b) in addition to 
that for the supersonic route being already shown on figure 9 (a). Note that the vertical 
scales of figures 9(a) and 9(b) are different. Note also that the position 5 of the 
crossover point (where M =  1) is different for the two routes because the overall 
magnetic Reynolds number is different (magnetic Reynolds number based on distance 
from entry to crossover is the same). Included on figure 9(b) is the distribution for 
A* = 5.36, a case corresponding to a type c (B,p)-curve. 

The relation between A* and magnetic Reynolds number 1-2 is plotted on figure 10 
for ,!I* = 1.75 and 8.75. Note the steps in the curves where flow in the duct changes 
from supersonic to subsonic in the approach to sonic exit (boundary BB‘B on figures 
5 and 6); a shock wave would occur in the duct for values of r k  within the range of 
a step. For comparison we have included a curve that corresponds to /3* --f 0. At this 
limit, the electromagnetic effects have no influence on the flow, which for a constant- 
area duct following a convergence would maintain a constant velocity u = 1 in non- 
dimensional terms. By direct integration of (35 a) for dB/d( it follows that to satisfy the 
conditions B = 1 at ( = 0 and B = 0 at ( = 1 

and 

A* = { 1 - exp (- r:)}-’, 
(37) 

The differences between this curve and those for /3* = 1.75, 8.75 are a measure of the 
influence of the ‘back EMF ’ generated by the flow. The differences at low r; (implying 
high A*) become small because the back EMF then has little influence and the 
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distribution of B approaches that expected in a stationary medium (i.e. linear - see 
figure 7(c)  for an example showing this trend). 

5.3. Calculations of KKS-limitjows (A* + co) 
As opposed to the analysis for a gas with p / p  = const., the perfect-gas analysis of $4 
has shown that it is possible for the flow to enter an MHD duct with M,, < 1, and at 
high A* may even approach what was referred to there as the KKS limit with M ,  + 0. 
As suggested in $4, in order to make the equations non-dimensional at this limit we 
have adopted the approach of Kuriki et al. (1983) wherein mass flow per unit area G 
is used to define a characteristic velocity uk (= Bi/2,uG - see (29)). Then velocity, 
density and pressure are made non-dimensional by u,, Glu, and Gu, respectively, while 
the controlling parameters in the equations become 

rk = ,ucru,L and A’ = E/uk B,. (38) 

The differential equations (35) are then recast to form 

- r&(u‘B’- A’), 
dB’ 
d5 
-- 

du‘ - 2rA{A’-u’B’}{(y- 1)A’- yu’B’} 
d6 p’u’2 - yp’ 9 

(39 a> 

(39 b) 

, (39 c) 
dp’ - 2r; p’{A’- u’B’} { (y -  1) A’- yu‘B’} z- y‘co‘u’2 - yp’) 

1, d6 { p’u’2 - yp’ 
[ (y  - 1) h’ - yu’B’] p’u’ dp‘ = 2rL{A’- U’B’} B’ + (39 d )  

the assumption of constant electrode spacing having been taken. The entry conditions 
are now u’ = 0, p‘ = co, but p’u’ = 1.0. From the expression (29) for u,, the starting 
value of p‘ is seen to be the ratio of plenum-chamber pressure to initial magnetic 
pressure. In turn the plenum-chamber pressure is directly related to p*u*’ by (20) 
(recall that p*u*’ is not zero for finite p p  although p’u’’ at entry is), so that at entry p’ 
is found from p* by 

By (32) and (33), A’ is determined as a function of P*. Equations (39) are then solved 
in a similar manner to the previous computations, trial values of r; being taken and 
the equations integrated step by step until a value of r; is found that gives B = 0 at the 
end of the duct. Three values of P* were selected for computation (1.75, 8.75 and 
15.006). The first two values correspond to those used in the earlier calculations, and 
the third is the limiting value taken on the line BB’B” in the @*, A*)-space of figures 
5 and 6. 

As expected, the first two calculations produced sonic flow at exit via a subsonic 
route (flow with a type c (B, p)-curve). The last calculation produced a sonic point near 
the duct entry, with subsequently either a subsonic route or a supersonic route to a 
sonic condition at exit (flow with a type b (B,p)-curve). Plots of the Mach-number 
distribution along the duct have been added to figures 8 and 9(b), for p* = 1.75 and 
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FIGURE 1 1 .  Mach number variation in the KKS limit for the case when /I* is just high enough ( 1  5.006) 
for supersonic flow in the duct to be a possibility. -, Solutions obtained by integration of (39); 
___  , check on subsonic solution by integration of (34). 
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FIGURE 12. Value of electric-field parameter A’ against magnetic Reynolds number rk 
in the KKS limit. 

8.75 respectively. Figure 11 shows the two Mach-number plots for the third value of 
/3* (15.006). As for the type b routes of figure 9(b), the position 6 of the crossover is 
different, depending on whether the flow is supersonic or subsonic after the crossover. 

The final figure of this section (figure 12) shows the variation of A’ with rh for the 
KKS-limit calculations so that a direct comparison may be made with the results of 
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Kuriki et al. (1983).-f It is clear that the difference between our line with the effect of 
pressure included in the analysis and that with pressure neglected is not great. 
However, we emphasize that in the KKS limit neither A’ nor r; are independent non- 
dimensional groups once p* is specified. Figure 12, therefore, does not have the same 
kind of significance as figure 10, which may be interpreted as showing A* as a function 
of independent parameters r: and p*. 

Although r; plays the role of a magnetic Reynolds number in (39a), its major 
significance in the present context is to act as a mass-flow parameter. Thus the 
definition of r; in (38) and the definition of uk, (29), give 

r; = C T B ~  L/2G. (41) 
If p* is taken as the controlling non-dimensional group (i.e. specifying position along 
the upper boundary of figure 5), it may well be appropriate to take as the important 
dependent groups : 

mass flow parameter GlcrB; L = 1/2r;, (42 a)  

and voltage parameter vpEL/B,, = A’&, (42 b) 

but these have not been plotted as functions of p* since the information is implicit in 
figure 12 (note, however, that the voltage parameter is unity when back emf is 
negligible). 

On the other hand it would certainly be reasonable to envisage a practical situation 
where G is the physically controlled quantity rather than the plenum-chamber pressure. 
This might be the case for a given feed to the plenum chamber, the pressure there being 
allowed to settle to whatever value is required for steady operation. Then r; and A’ 
are appropriate independent and dependent groups as they stand. 

6. Concluding remarks on thruster performance 
The analysis of flow in the MHD duct with the effect of gas pressure included has 

shown some features that correspond qualitatively with the findings of Kuriki et al. 
(1983), but there are striking differences. Of these the most immediate is the fact that 
there are no conditions under which it is valid to ignore pressure. As illustrated on 
figure 5 there is a limit to the value of the ratio of initial magnetic pressure to plenum- 
chamber pressure for which flows are possible (at p* = 29.36 for y = $, from which we 
may derive the ratio to be 10.57 using (20)). Since the ratio was found to be 
independent of y at point B” (see the end of $4), there is an indication that the limited 
range is a general feature whatever gas laws are assumed (although, to obtain the 
particular value 2715 for the ratio at B”, assumptions that h and p/p are proportional 
to a’ are still required). 

At the downstream end of the duct the analysis has shown that above BB’B” on 
figure 5 the exit state is sonic, so that pressure there remains comparable with the 
momentum flux per unit area. Even for the regimes between BB’B” and AA‘A“, for 
which the exit states are supersonic, the maximum exit Mach number achievable occurs 
at the limiting point A ,  the value being 3.051 for y = $ and the ratio of momentum flux 
per unit area to pressure is 12.41. 

It is clear therefore that the pressure in the plenum chamber makes some 
contribution to the thrust produced by the MHD duct, whatever the operating 
condition. To reinforce some of the points that have emerged from the present analysis, 

t Our A’ is twice their voltage parameter $ and our rk is one half their R,. 6, R,  and their 
definitions were referred to in 4 1. See also (41) later for rk in terms of basic properties. 
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FIGURE 13. Arrangement of a thruster. The dashed lines indicate a diverging section, which might be 
added to increase thrust by allowing the gas to expand to negligible pressure after the MHD duct. 
The build-up of thrust per unit area of MHD duct is indicated by the ( p  +pu2) expressions and Gu,. 

we conclude with a brief discussion on thrust and the efficacy of the duct for this 
purpose. In this context there is a well-recognized modification to the geometry which 
will increase the thrust at any operating condition, namely to add a diverging section 
so that after exit from the MHD duct the gas will expand to the negligible pressure 
which we take to be ambient (e.g. see Shapiro 1953). This is illustrated schematically 
in figure 13 and we shall assume the area ratio across any such divergence approaches 
the ideal, i.e. it approaches infinity. 

There are three essential components in the production of thrust per unit cross- 
sectional area of the MHD duct T / A .  First is a component associated with the plenum- 
chamber pressure and the impulse that can be generated at the end of the inlet 
convergence : 

where 

3 = p o + p o u :  = --q, Bt 1 
A 2P P* (43) 

(44) 

This thrust is transmitted to the structure by the action of pressure on the walls of the 
plenum chamber and initial convergence. The second thrust component is given by the 
rise in impulse across the MHD duct 

(45) & / A  = P e  + P e  4 - P O  - P O  u: = B:/2P, 

where subscript e refers to the state at duct exit. We then have & / T ,  = P*/C,. & is 
transmitted to the structure by the mechanical supports of the wiring and electrodes. 
The third component is due to the final expansion in the added diverging section: 

GI' = P e  ue uj - P e  -pe ue2, (46) 

where uj is the velocity of the final jet and may be found from the fact that the final 
kinetic energy iuj" is the same as the stagnation enthalpy at duct exit he +iu,". The effect 
of the divergence is best expressed in terms of a factor C,, such that 

T / A  = T,/A + & / A  + T , / A  = (T , /A  + & / A )  C,, (47) 

where 
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Ma respectively. Also dependence of C,. of (51) on entry Mach number. 

This final thrust component is transmitted to the structure by the action of pressure on 
the walls of the divergence. From (43), (45) and (48) we obtain 

- T = -(-+ Bt C, I) c,. 
A 2P P* (49) 

C, and C, are plotted as functions of M ,  and Me respectively for y = $ on figure 14. 
If no divergence is fitted, (49) with C, set equal to unity gives the total thrust per unit 
cross-sectional area. 

It will be seen from (49) and figure 14 that for values of /3* somewhat greater than 
unity the first thrust component makes only a modest contribution, the overall thrust ., ... . .. 1 .  ..- . c .. . .. . . . per unit area witnout a aivergence being not very ainerent rrom tnat preaictea by 
Kuriki et al. (1983), namely B32,u. However, the factor associated with the divergence 
can be significant since we have found that over much of the range of possible 
operating conditions the exit Mach number is unity. C, is then equal to 1.512. Even at 
the highest possible value of Me (quoted above as 3.051 at A”), C, equals 1.187 and the 
diverging section provides nearly 20 YO amplification of thrust. 

The major advantage of using MHD techniques in a thruster comes about not so 
much from the increase in thrust (that can be achieved by increasing plenum pressure 
or size), but rather from an increase in specific thrust (thrust per unit mass flow rate). 
When the flow regime is such that the Mach number at entry is unity (region ABB’A 
on figure 5 ) ,  the mass flow rate is fixed by the plenum-chamber conditions and the 
cross-sectional area of the duct, while thrust is increased by the electromagnetic forces 
above the no-field condition, but only to a limited extent. A substantial improvement 
only occurs when the electromagnetic effects compel the entry Mach number to be 
significantly less than unity, i.e. for conditions approaching the KKS limit. 
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Specific thrust T/m may be found from the expression for T / A  in (49) divided by pu, 
but a more direct and enlightening approach is to work directly from overall energy 
considerations (the two methods give the same result because of the link provided by 
conservation equations having been satisfied within the MHD duct). For the case of 
a thruster fitted with a divergence T/m is just the velocity of the final jet uj.  We found 
uj above by equating the kinetic energy of the jet to the stagnation enthalpy at duct exit, 
but it is also equal to the enthalpy in the plenum chamber plus the energy per unit mass 
added electromagnetically :t 

To allow for a divergence not being fitted, we now need to divide by the factor C, of 
(53), so that 

C, should therefore be given the value unity if there is a divergence, otherwise values 
are as in figure 14. Three components may again be recognized in the above equation: 
the effects of the plenum-chamber state, the MHD duct itself and the divergence, 
although they are not proportioned in the same way as for thrust per unit area. From 
the definitions (21 a)  of A* and /3* and with the standard gasdynamic result for G/p*u* 
in terms of Mach number, (50) may be rewritten as 

= {2(h, + EB,/,uG)$ 

T /m = {2(h, + EB,/pG)}~/C,. (50) 

and values of C,, (= G/p*u*) are given in figure 14 as a function of entry Mach 
number M ,  for y = %. 

High specific thrust is favoured by operation as close to the KKS limit (rk+O) as 
is practical since this will give high E and low G. As has been seen in $4 the enthalpy 
of the gas in the plenum chamber can be neglected at that limit and M,+O (or 
equivalently in (51) A* + 00 and C,, = 0), so that specific thrust is related only to the 
energy added electro-magnetically per unit mass flow rate and to the effect of the 
divergence. It is interesting to find then that the value of /3* (i.e. the particular operating 
point) is immaterial in the KKS limit when high specific thrust is desired provided that 
a divergence is fitted. It can be achieved equally well at low values of /3* (i.e. near the 
A*-axis on figure 5 ,  when acceleration by the electromagnetic forces has a weaker 
influence than the electrical heating) as at the higher permissable values. Low /I* 
implies that the thrust per unit area is associated mainly with TJA in (47) (see also 
(49)). It is then as if the MHD duct acts as a ‘valve’ limiting the flow rate while 
maintaining the thrust due to plenum-chamber pressure. However, if no divergence is 
fitted, there will be an advantage in operating the duct towards the higher end of the 
/3* range where the exit state is supersonic and the penalty of the C,  factor is less than 
for sonic exit. 

We should like to record our debt of gratitude to the late Arthur Shercliff, who 
introduced both of us to the fascination of MHD. It is many years since he kindled in 
us a particular interest in magnetogasdynamics, but it is a measure of the enthusiasm 
which he generated that the interest has endured. 

t Kuriki et al. (1983) defined an efficiency as the ratio of kinetic energy in the jet to the electrical 
energy supplied, and its value is measure of the extent to which the supply power is divided between 
work done in accelerating the gas and ohmic dissipation. Here, all the electrical energy contributes 
to the rise in stagnation enthalpy and is in principle recoverable as kinetic energy. 
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